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FOREWARD 

I 

This is a special technical report on a study conducted by the 

Electrical Engineering Department under the auspices of the Auburn 

Research Foundation toward the fulfillment of the requirements 

prescribed in NASA Contract NAS8-11251. An evaluation of a crossed- 

slot, cavity backed antenna element having application as an element 

in an electronically scanned array is presented. 

I 
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ABS TRACT 

The present trend in tracking antennas is toward electronically 

scanned arrays. These arrays consist of a number of antenna ele- 

ments. The phase or amplitude is varied between these elements 

t o  point the beam of the antenna to a position in space without a 

mechanical movement of the antenna structure. The slot antenna 

is applicable to the electronically scanned antenna array. 

A theoretical discussion of the electromagnetic field charac- 

teristics of a crossed-slot antenna is presented through the appli- 

cation of Babinet's Principle to the dipole antenna. 

The antenna has a theoretical elevation pattern which is a 

hemisphere. This is true only when the antenna is constructed in 

an infinite ground plane. 

polarization when the slots are excited with a signal of the proper 

amplitude and phase. 

these conditions is discussed. 

The crossed-slot antenna has elliptical 

The design of a resonant cavity to fulfill 

... iwo test antennas were constructed. Each antenna is fed. with 

a resonant cavity which has two coupling loops. 

magnetically coupled to the cavity at a magnetic field maximum. 

The difference between the test antennas is that one has been reduced 

in mechanical size through the use of dielectric loading. 

These loops are 

Antenna patterns for the two test antennas are presented. 

iii 



The antennas exhibit elliptical polarization and a broad beamwidth 

in the 8 plane 
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I. INTRODUCTION 

A need exists for improvements in tracking antennas designed 

to be used in conjunction with space vehicles and artificial earth 

satellites. 

The beam also must be scannable in order to follow the path of a 

space vehicle. Large parabolic reflectors have been used for this 

purpose. The motion of the antenna is controlled by a servomechanism 

system and the beam moves as the antenna position is changed. 

has the disadvantage of requiring a large mass to be moved by a 

~ n u i u r .  111 z d d i t i ~ : ,  it I s  zf+arr necessary that an operator be present 

when the antenna is functioning. 

Such an antenna must have a relatively narrow beam width. 

This 

-r 

Lately, electronic scanning antennas have been used success- 

fully. In these the physical antenna remains stationary while the 

beam is moved by electronic means. 

of  elements. The beam is moved by varying quantities such as the 

phase or amplitude between the individual elements. 

The antenna consists of a number 

These elements are usually identical. The final pattern of 

the antenna is the multiplication of the pattern of each individual 

element and that of the configuration or array in which these elements 

are located. 

I n  order to move the 

pattern of the individual 

beam through a hemisphere of coverage the 

element should be as nearly hemispherical 

1 
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as possible. This prevents nulls from occurring in the final pattern 

of the antenna as the beam is scanned. 

The antenna should have elliptical polarization because of the 

changing relative orientation of the vehicle transmitting antenna. 

Elliptical polarization enables the antenna to track regardless of 

the orientation of the vehicle. 

The crossed-slot, cavity backed antenna ideally has these 

desired characteristics. In addition it has a physical advantage due 

to its shape. The radiating portion of the slot antenna is a flat 

plate in which slots are cut. This allows the entire antenna to be 

mounted internally with the radiating portion flush with the surface 

of the mounting structure. This configuration is quite desirable 

for the type of antenna application in question. 



11. THEORETICAL DISCUSSION 

The slot antenna 

The slot antenna may consist simply of a narrow cut in a flat 

sheet of conducting material. 

magnetic field in the slot does not generally depend on the spatial 

The spatial orientation of the electro- 

orientation of the electromagnetic field in the feed structure. 

The field in the slot is determined by the boundary conditions for 

the conductor containing the slot. The boundary conditions are 

- -  
n x E = O  

and 

- -  
n . B = O ,  

where is a unit vector everywhere normal to the conductor in which 
- 

the slot is cut, E the electric field vector, and = IJ.H the magnetic 

vector. Thus, the electric field must be everywhere perpendicular 

to the surface in which the slot is cut. 

The field in the slot has the configuration shown in Figure 1, 

with the line density representing electric field magnitude. The 

electric field tangent to the slot ends must be zero to satisfy the 

boundary conditions. In the case of a resonant slot antenna (h /2  in 

length) the field will have a distribution of approximately 

3 
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Fig. 1--The Electric F i e l d  Variation in a Slot Antenna 
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where is measured in wavelengths from the center to the ends of the 

slot and k = 25rfh. 

This field configuration is seen to be the exact complement of 

an electric dipole with the electric and magnetic fields interchanged. 

This is known as the duality principle and is stated as follows: 

If an e.m.f. of frequency f is applied to an ideal slot 
antenna from a" arbitrary source, the electromagnetic field 
vectors E and H in the slot and the space surrounding the 
slot will have the same directions and will be the same 
functions of the space co-ordinates-as the directions and 
the functions of the vectors H and E respectively of the 
field of a dipole consisting of an ideally conducting 
infinitely thin plate, located in free space and having 
the sane shape and dimensions as the slot, when an e.m.f. 
of the same fre uency f is applied to the plate at corres- 
ponding points. 4 

This corresponds to the Babinet principle in optics which states: 

The field at any point behind a plane having a screen, if 
added to the field at the same point when the complementary 
screen is substituted, is equal to the field at the point 
when no screen is present. 2 

Thus , 

UA(P) + u;(P) = U0(P), 

where Uo(P) is the unobstructed amplitude at a point P and UA(P) 

+ U;(P) is the amplitude at point P due to the screen plus its comple- 

ment. 

The patterns in the radiation field and the near zone may be de- 
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rived from those of a complementary dipole antenna. The radiation 

conductance, gl, of the slot is related to that of the complementary 

dipole by 

where R, is the radiation resistance of  the .dipole.l The admit- 

tance, Y1, of the slot is 

Y1 = (R, + jx2),  
(601r)~ 

where X2 is the reactive component of the complementary dipole. 

Radiation field patterns of  a slot antenna 

Consider the co-ordinate system of Figure 2. Let a short dipole 

of length @, be oriented along the z-axis with the center at the 

origin. The vector potential at a field point Y is 

z=s- 4nr 
c 

where c denotes the current carrying path and I is the current 

carried by an element of length dj. 

tured % has only a z component and the vector potential is 

In the co-ordinate system pic- 

ae 12 

-@, I 2  

(7) 
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where nQ i s  t h e  length  of a small antenna s i t u a t e d  along t h e  z - a x i s , s  

i s  t h e  d i s t a n c e  from the  c u r r e n t  element t o  the  f i e l d  p o i n t  and [I] 

i s  t h e  r e t a rded  cu r ren t .  The re ta rded  cu r ren t  i s  

jcu(t- s / c )  I = Ioe , 

where w = 2gf .  For the  s h o r t   dipole,^ may be approximated by r and 

he ld  cons t an t  i n  the  i n t e g r a t i o n .  The in tegrand  i s  cons t an t  and the 

v e c t o r  p o t e n t i a l  becomes 

z h r  

- 
The magnetic f i e l d ,  H, i s  found from the  r e l a t i o n ,  

- - 1  H = - - V x A .  CL 

- 
I n  t e r m s  of t he  coord ina te  system depic ted  on Figure 2,  H may be 

w r i t  t e n  

I d s i n g e  jcu ( t - r /c ) 

4.rr 

- 
H = m o  = 

where S i s  a u n i t  vec to r  i n  t h e  0 d i r e c t i o n .  I n  t h e  f a r  f i e l d ,  on ly  
0 

t he  term conta in ing  - 1 i s  of importance; t h e r e f o r e  
r c  
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I 

Consider a d ipo le  of length  h/2 composed of t hese  s h o r t  d ipoles .  

Associated wi th  an  element of length dz of t h i s  d ipo le  i s  a magnetic 

f i e l d ,  d q ,  

d q  = d  s inedz  
2h s 

where d q  = H4 o f  t h e  s h o r t  d ipole  considered previous ly .  

I f o r  a d ipo le  of length  L i s  

The c u r r e n t  

4 
a 

For t h e  p a r t i c u l a r  case  t h a t  L i s  one h a l f  of a wavelength h , i . e . ,  

L = h / 2 ,  

= Iosin[T f i +  - z ]  e jw( t - s  /c )  
5 1 2  

For the  h/2 d ipo le  s \ r. The path, s ,  i s  dependent upon z i n  Figure 

(2 )  and must now be considered i n  the  i n t e g r a l .  Figure 3 d e p i c t s  t h e  

geometry f o r  t h e  requi red  in t eg ra t ion .  One may see from the  geometry 

t h a t  

I 
s = r - z cos0. 
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The total magnetic field is obtained from the integration of the mag- 

netic fields of the infinitesimal dipoles of length dz, or 

For the particular case of a dipole of length h / 2 ,  equation (18) may 

be integrated to obtain 

sine 

The electric field for the slot antenna is found by the applica- 

tion of Babinet's Principle to be 

2 nr s in6 

when the slot is oriented in the manner of the dipole in Figure 2. 

It must be remembered,however,that the dipole existed in iree space. 

Thusjthe slot antenna must be the complement of the dipole and 

exist in an infinite ground for equation(20) to hold exactly. For an 

infinite ground plane,the pattern in the xy plane of Figure 3 is 

omnidirectional for the s l o t  and varies as the pattern factor 
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i n  t h e  yz  plane.  The r a d i a t i o n  p a t t e r n s  f o r  t h i s  i d e a l  case a r e  

shown i n  Figure 4 .  The r a d i a t i o n  is  equa l  from the  two s i d e s  of t h e  

ground p lane ,  but  t h e  phase of t h e  r a d i a t i o n  f i e l d  i s  reversed  from 

one s i d e  t o  the  other ' .  

Consider t h e  r a d i a t i o n  from one s i d e  of the  conducting s h e e t .  

The hemispherical  p a t t e r n  i n  the  @-plane i s  obtained only  f o r  an 

i n f i n i t e  ground plane.  The p a t t e r n  of the  s l o t  i s  dependent upon 

t h e  c u r r e n t  d i s t r i b u t i o n  on the  conducting ground plane.  The c u r r e n t  

d i s t r i b u t i o n  changes wi th  an  a l t e r a t i o n  i n  ground plane conf igu ra t ion  

o r  s i z e ;  t h e r e f o r e ,  the  @ plane p a t t e r n  w i l l  be changed under these  

cond i t ions .  Severa l  methods a r e  ava i l ab le  f o r  approximate c a l c u l a t i o n  

of t h e  r a d i a t i o n  f i e l d  of a s l o t  in  a f i n i t e  ground plane,  but  t h e s e  

a r e  lengthy  and g ive  r e s u l t s  t h a t  are d i f f i c u l t  t o  c o r r e l a t e  wi th  

experimental  da t a .  J a s i k  g ives  measured examples of @ p a t t e r n s  f o r  

v a r i o u s  ground plane s i z e s .  These p a t t e r n s  are shown i n  Figure 5. 

The 8 plane p a t t e r n  i s  r e l a t i v e l y  unaf fec ted  by changes i n  ground 

3 

plane  s i z e .  
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9 Plane Pa t te rn  

@ Plane P a t t e r n  

Fig. 4--The €3 and @ Plane Pa t t e rns  o f  a S l o t  Antenna i n  An 
I n f i n i t e  Ground Plane Oriented as i n  Figure 3. 
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z-axis ' 
t 

d = 2h 

z-axis 
4 

d = 3h 

z-axis 
t 

d = 1Oh 

Fig. 5--Polar Plots of the 0 Plane Pattern for Various Ground 
Plane Diameters (d) 
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Radia t ion  p a t t e r n s  and p o l a r i z a t i o n  of a c rossed  s l o t  antenna 

Consider two d ipo le s  of length  j / 2  or i en ted  as shown i n  t h e  co- 

o r d i n a t e  system of Figure 6 .  

obta ined  by a r o t a t i o n  of t h e  coordinate  system of Figure 3 and 

t ransformat ion  of t he  equat ions obtained f o r  a d ipole  i n  t h i s  coord i  

n a t e  system. 

The p a t t e r n s  of each d ipo le  may be 

- - 
I n  the  coord ina te  system of Figure 3 ,  H = H@a@,  o r  

-1 Y 

- - s i n @  + cos@a , 

- 
where a and a a r e  u n i t  v e c t o r s  along the  x-axis  and y-axis .  I n  

t h i s  coord ina te  system cos8 = 2, s ine  = rn y_ 
X Y 

r r 
X _. 

One may s u b s t i t u t e  t h e  above r e l a t i o n s  i n t o  equat ion  (22) t o  

o b t a i n  

L e t  t he  coord ina te  system be r o t a t e d  i n  a clockwise d i r e c t i o n  

about  t h e  y a x i s  and the  new axes denoted by x ' ,  y '  and z ' .  The fol-  

lowing r e l a t i o n s  hold: x = z ' ,  y = y ' ,  z = x '  and r = r ' .  
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X 

Poin t )  

Y 

Fig.  6--The Coordinate System Showing t h e  Or i en ta t ion  of t he  
C r o  s s e d  - S l o t  Antenna 
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I n  t h e  r o t a t e d  coord ina te  system 

The q u a n t i t y  x' i s  the  d i r e c t i o n  cosine between t h e  x '  axis  and t h e  

v e c t o r  r ' .  

0 '  by 

r '  
The d i r e c t i o n  cos ines  x' and d. are r e l a t e d  t o  8 '  and 

r' r '  

- -  X '  - sine '  c o s ~  1 

r' 

and 

2 = s i n e ' s i n Q ' .  
r '  

Since 

2 2  I2 - Z t 2  + y = 1 - s i n  Bcos Q, 

one may s u b s t i t u t e  equat ions  (25) , (26)  and (27) i n t o  equat ion (24) 

t n  obtain t h e  express ion  

I[ 

Y s ines in@ < - cosea -1  cos (-sinecosQ) 

1 - sin2ecos2Q 

2 - 
H =  

The magnetic f i e l d  component i n  t h e  8 d i r e c t i o n  due t o  t h e  x a x i s  

d i p o l e  i s  obtained by computing the s c a l a r  product H * a . - -  
e 
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The 0 and r components, HaX and qX due to the x axis dipole are 
obtained in a similar manner. The €3; component is equal to zero if 

either the x axis or the y axis coincides with the axis of the dipole. 

The normalized magnetic field components in the radiation field are: 

'JI sinacos(7 sinecos@) 

1 - sin2ecos2@ Hex = 

when the dipole is aligned along the x-axis and, 

cosacos (zsinesina) 
2 

1 - sin @sin @ 2 2  Hey = 

and 
J[ cos@sin@cos(-sinesin@) 2 H =  

@Y 1 - sin2esin2Q 

for alignment of the dipole along the y-axis. 

-1he eiectric fieid or' the CuiiipjleTilefitaTji s l o t  antennas is o5ta lned 

by the application of the duality principle. The normalized elec- 

tric field components in the radiation field are 

sinQcos ('sinecos@) T 
1 - sin @cos 0 2 2  Eex = (33 1 
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and 

f o r  a complementary s l o t  a long t h e  x-ax is  wi th  t h e  c e n t e r  a t  t he  

o r i g i n ,  and 

?I cos@cos (-sinOsin@) 
- 2 

Eey - 
1 - s in%sin2@ 

and 
31 coses  in@ co s (7s in0sin@ ) 

E =  z 
@Y 1 - s i n  2 2  @ s i n  @ 

f o r  a complementary s l o t  along the  y-ax is  

A crossed s l o t  antenna or ien ted  as i n  the  coord ina te  system 

of Figure 6 w i l l  have a normalized e l e c t r i c  f i e l d  i n t e n s i t y  p a t t e r n  

obta ined  by t h e  vec to r  a d d i t i o n  of  t h e  normalized e l e c t r i c  f i e l d  

i n t e n s i t y  p a t t e r n s  of t h e  two perpendicular  s l o t s .  

The 8 component of the  e l e c t r i c  f i e l d  f o r  the  crossed s l o t  

antenna of Figure 6 i s  obtained by the  a d d i t i o n  of the  8 components 

o f  each s l o t .  It may be expressed as 

E e = E ex - j E O Y  ’ ( 3 7 )  

where t h e  nega t ive  s i g n  i s  used t o  i n d i c a t e  a t i m e  d i f f e rence ,  ( i n  

t h i s  case  a l ag  of the y-axis  f i e l d  component behind t h e  x-ax is  f i e l d  
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component) between the two components. 

right-hand elliptical polari~ation.~ Equation (37)  may be rewritten 

This is the condition for 

as 

Tt 71 sinocos (;;-sinecosO) cos~cos (;;sinesin@) 
E 

. - j  L 

2 2  1 - sin 2 2  &os 4 1 - sin @sin @ 
% =  

The 0 component of the electric field may be treated in a 

similar manner to obtain 

Eo = EQX - jEoy + (39) 

or 

Tt cosecos@cos (-sinecos@ ) cosecosocos (%inecos@ ) 
. 

(40 )  ,2 
2 2  1 - sin @sin @ 

- j  2 Eo = 
1 - sin%cos2@ 

Equations (38 )  and ( 4 0 )  are the pattern factors for the Ee and 

E components for the crossed-slot antenna. Plots of these factors 

show the 0 component to be present throughout the hemisphere and 

have only a variation of 1 decibel from the maximum value for an 

infinite ground plane. 

for the 8 component in the plane of maximum variation, i.e., @ = 45'. 

This figure also shows the normalized field pattern for the 0 

component in this plane as a function of the angle 8 .  

@ 

Figure 7 shows the normalized field pattern 

5 
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Cavi ty  cons ide ra t ion  f o r  feeding the crossed s l o t  antenna 

The p o l a r i z a t i o n  of  an e l e c t r i c  wave i s  def ined  as t h e  o r i en ta -  

t i o n  of t he  e l e c t r i c  f i e l d  vec to r  during one f u l l  cyc le  of  t h e  wave. 

General ly ,  t he  magni,tude and phase of the  vec to r  vary  and descr ibe  

an e l l i p s e  i n  a p lane  perpendicular  t o  the  d i r e c t i o n  of propagat ion.  

Atany t i m e  t ,  t h i s  e l l i p s e  may be inves t iga t ed .  The p o l a r i z a t i o n  w i l l  

appear as a vec to r  o f  a c e r t a i n  magnitude a t  a phase angle  i n  the  plane.  

This  i n  tu rn  may be broken down in to  or thogonal  components. These are: 

and 

r 1 
Ey = E2cos m ( t  - 2) + q ]  , 

l v  

where E 1  and E2 are the  magnitudes of the  x and y components, z i s  the  

d i r e c t i o n  of  propagat ion ,  v i s  t h e  v e l o c i t y  of propagat ion and 9 some 

phase a11gle. Ir: t h e  plane5 z = 0,  we have 

E, = ElCOSCUt (43 ) 

and 

E = E2cos(cot + $) . 
Y 

(44 1 
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The last two equations are seen to be the parametric equations for 

Thus an elliptically polarized wave may be con- an ellipse if Jr = 3112. 

sidered as the resultant of two linearly polarized waves of the same 

frequency. 
n If El = E2 and $ = - the resultant obtained by adding the and 2 

E components will always describe a circle. If $ = n/2 the re- 

sultant vector rotates in a counterclockwise direction when viewed 

in the direction of propagation. This is said to be left-hand cir- 

cular polarization. If $ = - - the vector rotates clockwise and is 
said to be right-hand circular polarization. 

The conditions for circular polarization are that there be two 

Y 

n 
2 

orthogonal electric vectors of equal magnittlde with a time phase 

shift of n/2 between them.6 

be constructed from two identical linear polarized antennas orthogonal 

in space 

Design of the resonant cavity 

Thus a circularly polarized antenna may 

The cavity feed for the slot antenna may be viewed as a section 

of waveguide terminated by two conducting plates. 

must satisfy the boundary conditions imposed by the conducting walls 

of the cavity. 

is called a "mode" of the waveguide. 

Maxwell's equations 

The equations have many solutions and each of these 

Consider the waveguide section of Figure 8. If one assumes the wave- 

guide walls to be ideal conductors it is possible to solve for the 

transverse electric and magnetic field components: i.e.; Ex, Ey, H,, and 

H , in terms of the axial components, H and EZ. 
Z Y 
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Y 

Fig. 8--The Coordinate System Showing the Orientation of a 
Rectangular Waveguide Section 
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For the transverseelectric mode, i.e., the one in which there is 

no longitudinal electric field component, the field equations are 

given by Ram0 and Whinney' as 

H = BcosKxXcosK Y, 
z Y 

where B is a constant,and 

EZ = 0. 

The quantities x andy give the distance along the sides a and b 

respectively and 

mrt % = a  
and my n = 1, 2, 3 ... 

(45 1 

(47)  

The positive integers my n denote the waveguide mode or the particular 

solution of Maxwell's equations being considered. 

The transverse components are 

E = 3 K BcosK XsinK Y, 
Y X Y 

KC 
X 

E = K BsinJ$XcosK,,Y, 
Y Kc Y 



and 
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yr = - 3 sBsinKxXcosK Y Y 
K, 

H = 3 KyBcosK&sinKyY, 
KC 

Y 

2 where Kc = IC, + % and y2 = Kc2 - K is the propagation constant 

which determines the z dependence of the field component, i.e., 

and 

H N e'yz. (53) 

If y is real the wave is attenuated as it travels. If y is imaginary 

the wave is not attenuated. If y = 0 the wave is at what is desig- 

nated cut-off with a wavelength defined by 

The propagation constant y has both a real and imaginary part, i.e., 

y = a + j g .  ( 5 5 )  
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When the waveguide is above cut-off y = j@ and 

c 

6 =JK2 - G2 = K  J 1 - Kc 2 2  /K . 

One may substitute the values of Kc and K into equation (56) 

2 
B = K \rl - ( h/h~) . 

The waveguide wavelength, hg, is the distance in which the phase of 

the field component proportional t o  e -jBz increases by 2s or 

2l-i 

""=B ' 

which may be expressed as 

It may be seen from equation (59) that above cut-off the waveguide 

wavelength is greater then the free space wavelength A. 

For the waveguide to be a resonant cavity conducting plates 

are placed on each end at a distance 

d = -  h g  , where a = 1, 2, 3 ... 
2 

(57) 

(58) 
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The length of a resonant cavity is 

d =  he 
2 J 1 - -(A/Ac)2 

I 

Equation (61) may be solved for A which yields 

L =  (A) 2 1  + -  . 
A2 2d AC2 

Equation (62) may be used to determine the allowed wavelength 

in the cavity and therefore the resonant frequency of the cavity. 

A traveling wave may be represented as the sum of two waves 

propagating in opposite directions, i.e., 

E = A(E+ e'yz + E-eyz) 

or for the case of lossless transmission 

The magnetic field component must satisfy the Maxwell equation 

If only an E component is assumed to be present in the cavity 
X 



3 E  
1 'X - -  

H = a  - - - .  
jw 

2 9  

For a wave,E+, traveling in the positive z direction E+ = Ae-jgz, where 

A is an amplitude constant which is a function of the boundary condi- 

tions on the waveguide sidewalls. 

the Hy component in the positive z direction. 

Equation (66) may be solved for H + Y '  
This procedure yields 

where 

z = &L = a. Similarly, the negative traveling wave,H;, is 
Y B 

The tangential electric field must be equal to zero at the cavity 

shorting plate; hence, 

E+ + E- = 0 
X X 

- - 
Therefore, E+ = - E and Hy = - A e''' . 
field components obtained from ( 6 4 )  are 

The electric and magnetic 
Z X X 

E, = - 2jAsinBz 
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and 

H = 2A cosgz . 
Y Z  

Therefore ,  t h e  e l e c t r i c  and magnetic f i e l d s  have a t i m e  phase d i f -  

fe rence  of 7r/2 and a p o s i t i o n  of maximum t r a n s v e r s e  e l ec t r i c  f i e l d  

i s  a p o s i t i o n  of minimum t ransverse  magnetic f i e l d .  



111. CONSTRUCTION OF THE ANTENNA 

In  t h e  o rde r  t o  cons t ruc t  a n  antenna t o  ope ra t e  i n  the  manner de- 

s i r e d ,  i . e . ,  wi th  e l l i p t i c a l  p o l a r i z a t i o n  and wi th  a hemispherical  

r a d i a t i o n  p a t t e r n ,  the  fol lowing condi t ions  must be f u l f i l l e d :  

(A) The two or thogonal  e l e c t r i c  f i e l d  components must be equal  

i n  magnitude. 

There must be  a phase d i f f e rence  of fi/2 between these  (B) 

components. 

(C)  There must be a perpendicular  e lec t r ic  f i e l d  component i n  

t h e  opening of each s l o t .  

m lhe electric f i e l d  ccxpznents m-e equal  i n  magnitude i f  

K = K .  
X Y  

I n  t h e  t r a n s v e r s e  e l e c t r i c  mode so lu t ion  (TE ) t h i s  condi t ion  i s  

obta ined  by cons t ruc t ing  a c a v i t y  wi th  equal  dimensions ( a  = b) .  Thus 

the  c a v i t y  should be square wi th  a length  equal  t o  one-half  t he  wave- 

guide  wave-length, &- 
by t h e  use  of two coupl ing loops.  

of t h e  c a v i t y  which i s  a reg ion  of maximum magnetic f i e l d  i n t e n s i t y  

because the  t r ansve r se  e lec t r ic  f i e l d  must be zero i n  t h i s  region 

i f  t h e  boundary condi t ions  are t o  be s a t i s f i e d .  The c a v i t y  may 

a l s o  be coupled through a probe in se r t ed  i n  an e l e c t r i c  f i e l d  maximum. 

The placement may be i n  the s idewalls ,  but  t h i s  would preclude the  use  

11 

x 
The cav i ty  i s  magnet ica l ly  coupled t o  the  source 

L 

These loops a r e  placed i n  the  base 

of t h e  c a v i t y  element i n  an antenna a r r a y  wi th  close element spacing.  

3 1  
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TO introduce a time phase shift of sr/2 between the electric field 

components, one of the loops is fed with a line which is h / 4  longer 

than the feed line to the other coupling loop. 

conditions are fulfi1,led: The two equal electric field components are 

orthogonal in space with a time phase difference of 3 ~ 1 2 .  

Therefore the following 

The cavity may be represented 

parameters. An equivalent circuit 

Purcell for a loop-coupled cavity 7 

by an equivalent circuit of lumped 

is given by Montgomery, Dicke and 

near resonance in Figure 9. The 

equivalent circuit has been modified to include a two loop input 

rather than a single loop and a representation t o  denote coupling out 

of the cavity through the radiating slots. 

the feed lines through the loops represented by Li , ( l )  and L.  (1) . 
The degree of coupling is denoced by a coupiing c o e i I i c i r r ~ t ,  6 .  

There is a mutual coupling coefficient, M, present between the feed 

loops. At resonance the cavity may be represented by a loss resis- 

tance and the reflected radiation resistance of the slot antenna 

R . This portion of the circuit may not be simplified because of the 

undertermined nature of the output coupling coefficients B 

At resonance the slot antenna appears as pure resistance. 

The cavity is coupled to 

- -- 1 II 

a 
1 

and B2. 2 

1 

It is apparent B1 and f31 should be equal in magnitude and as 

close to unity as possible. This allows the maximum amount of 

energy to be coupled into the cavity. The standing wave ratio r, 

must be equal to unity t o  fulfill this condition, The standing 
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wave r a t i o  i s  def ined as 

where pis t h e  r e f l e c t i o n  c o e f f i c i e n t  which g ives  the percent  of 

energy r e f l e c t e d .  

A s t and ing  wave r a t i o  of u n i t y  denotes a p e r f e c t  match t o  the  input  

feed s t r u c t u r e  and t h e  feed w i l l  undergo no impedance changes i f  

t he  length  of  t h e  feed l i n e  i s  changed. 

For a coupl ing c o e f f i c i e n t  of un i ty ,  r= 0. 

The phys ica l  s i z e  of t h e  cav i ty  may be reduced by the  i n s e r t i o n  

i n t o  t h e  c a v i t y  of a d i e l e c t r i c  with a r e l a t i v e  p e r m i t t i v i t y  g r e a t e r  

than  u n i t y .  This  changes t h e  v e l o c i t y  of propagatFsn by a fittnr 

- - ' (free sp-ace) 
(d ie  lec t r i c.) 

E r  

which i n  t u r n  decreases  t h e  wavelength. 

Table (1) g ives  va lues  for cav i ty  dimensions a t  t h e  des i r ed  

frequency of opera t ion .  

Figure (10) shows a photograph of t h e  orossed-s lo t  antenna. 

Figure (11) shows a comparison photograph of t h e  unloaded and 

d i e l e c t r i c  loaded antenna c a v i t i e s .  
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F i g .  10- -A  Photograph of t h e  Crossed -S lo t  Antenna 

' / * # ' I  
1 2  3 4 5 6 7 8 9 10 - 

Fig.  11--A. Photograph of t h e  R e x o l i t e  Die lec t r ic  Loaded C a v i t y  
on t h e  L e f t  and t h e  Unloaded Antenna C a v i t y  on t h e  R igh t  
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TABLE 1 

COMPARISON OF THE AIR DIELECTRIC ANTENNA CAVITY 
AND REXOLITE DIELECTRIC LOADED ANTENNA CAVITY 

Material Aluminum Aluminum 

Dielectric Air Rex0 lite 

Relative Permittivity 1 2.54 

Cut-Off Frequency (fc) 1.90 kmc 1.90 kmc 

Operating Frequency (f ) 2.28 kmc 
0 (fo = 1.2f ) 

C 

Width (a = b )  

Length 8 
A 

2 

Feed Type 

7.9 cm 

I?.? cm 

2.28 kmc 

4.9 cm 

7.35 cm 

Fixed Loops Loops with series 
capacitor 

50 ohms Input Impedance 50 ohms 

Voltate Standing Wave Ratio 1.1 
(VSWR) 

1.05 

Tuning Adjustable slug Adjustable slug in 
in bottom face bottom face 



IV. EXPERIMENTAL EVALUATION 

The test antennas constructed were tested on an outdoor antenna 

range. The antenna without dielectric loading exhibited a maximum 

variation in polarization of 3 db.in the forward direction. The 

variation in gain for various polarizations became greater for 

increasing angle away from the normal to the plane of the antenna. 

The polarization pattern did not exhibit any nulls over a large 

variation in angle from the normal. 

The antenna beamwidth, or the angle at which the power drops to 

3 db. of -----... 1.- 0 
uLQA~LLLuuL is zpprcxirnztely s e v ~ n t y  degrees (70 ) . The 

gain s h ~ v c d  a vsr i=+ , ia i  n f  ncly 10 d h n v e r  a 132O beamwidth. 

patterns were obtained with a ground-plane of less than 10h x 1Oh. 

The beamwidth should be much improved by the use of a much larger 

ground plane. 

These 

The dielectric loaded antenna exhibited a maximum variation in 

polarization of approximately 4 dhin the forward direction. 

polarization deteriorated for larger deviation in angle from the normal 

to the antenna surface but no nulls were recorded over a very large 

beamwidth of the antenna. 

The 

The dielectric loaded antenna beamwidth ( 3  db) is approximately 

95O for an elevation cut along one of the slot antennas and approxi- 

mately 65' in the plane of maximum variation (+ = 45 ). This beamwidth is 
0 

37 
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satisfactory since the beam may be widened through the utilization 

of a much larger ground plane. 

The graphs in Appendix A and Appendix B were plotted on a 

Scientific-Atlanta automatic pattern recorder. 

tically plots the power received by the test antenna as a function 

of antenna position as the antenna position is varied. 

This device automa- 



V. CONCLUSIONS 

The test antennas exhibited the desired properties of ellip- 

tical polarization and a large, if not hemispherica1,beamwidth. 

was previously mentioned the beamwidth is dependent on the ground 

plane configuration and therefore the slot antenna should be used 

As 

with a large metallic sheet to obtain the desired hemispherical radia- 

tion characteristic. 

The antenna appears to be applicable to electronic scanning 

techniques when used as an element in an array. The actual change 

necessary t o  scan the array can be made prior to the ~ p p l i c a t l a n  

of the sigcal to the array element. 
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APPENDIX A 

The Aximuth and Elevation Field Patterns of the A i r  D ie l ec tr i c ,  

Crossed-Slot Antenna are as Follows: 

Fig.  A-1--The Azimuth Pattern of tbe Air Die l ec tr i c  Crossed-Slot Antenna (0 = 0') 

Polar Chart No. 127D 
SCIENTIFIC-ATLAN1 A. INC 

A T L A N T A .  GtORClA 

41 



42 

Fig .  A-Z--The Azimuth PacrrLu of the P.ir D i e l e c t r i c  Crossed-Slo t  Antenna (8 = 50) 

Polar Chart No. 127D 
SCIENTIFIC-ATLANTA. INC 

I T L A N T A .  GLORGlL 
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Fig .  A-3--The Azimuth Pattern of the A i r  Die lectr ic  Crossed-Sioi A~teiiza (5 = I C o )  

Polar Chart No. 127D 
SCIENTIFIC.ATLANTA, INC. 

A T L A N T A .  G L O R G l l  



44 

F i g .  A-4--The Azimuth Pattern of the A i r  Die lectr ic  Crossed-Slot Antenna (6 = i5°) 

Polar Chart No. 1270 
SCIENTIFIC-ATLANTA, INC 

ATLANTA. GEORGlA 
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Fig .  A-5--The Azimuth P a t t e r n  of t he -Ai r  D i e l e c t r i c  Crossed-Slot Antenna (6 - ;Go> 

Polar Chart No. 127D 
SCIENTIFIC-AlLANTA. INC 

A T L I N T A .  GtORGlA 
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Fig. A-6--The Azimuth P a t t e r n  of  the A i r  D ie i ecc r i c  Crossed-Biui A~tr t l i~a  (0 = X o >  

Polar Chart No. 1270 
SCIENTIFIC-ATLANTA. INC 

A T L A N T I .  G t O R G l A  



47 

Polar Chart No. 127D 
SCIENTIFIC.ATLAN7A. INC. 

A T L A N T A  GLORGlA 
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Fig. A-8--The Azimuth Pattern of the A i r  D ie l ec tr i c  Crossed-Slot Ancenna (a - :Go> 

Polar Chart No. 127D 
SCIENTIFIC-ATLANTA. INC 

A T L A N T A .  GEDRGlLi 
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Fig.  A-9--The Elevation Pattern of the A i r  D ie l ec tr i c  Crossed-Slot Antenna 

Polar Chart  No. 127D 
SCIENTIFIC-ATLANTA, INC. 

ATLANTA. GEORGIA 



APPENDIX B 

The Azimuth and Elevation Field Patterns of the Rexolite 

D ie l ec tr i c  Loaded Crossed-Slot Antenna are as Follows: 

Fig.  B-- --The Azimuth Pattern of the Rexolite ,D ie l ec tr i c  
Ioaded Crossed-Slot Antenna (e = 0) 

50 
Polar Chart No. 127D 

SCIENTIFIC.ATLANTA, INC. 
ATLANTA, GEORGIA 
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F ig .  B-2--The Azimuth Pattern o f  the Rexol i te  D ie l ec tr i c  
Loaded Orossed-Slot Antenna (0 = p) 

Polar Chart No. 127D 
SCIENTIFIC.ATLANTA. INC 

ATLANTA, GEORGIA 
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F i g .  B-3--The Azimuth Pattern of the Rexolite Dielectric 
Loaded Crossed-Slot Antenna (e  = loo) 

Polar Chart No. 12713 
SCIENTIFIC-ATLANTA, INC 

ATLANTA, GEORGIA 
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Fig. B-4--The Azimuth Pattern of the Rexolite Dielectric 
Loaded Crossed-Slot Antenna (9 ii 15') 

Polar Chart No. 127D 
SCIENTIFIC-ATLANTA. INC. 

ATLANTA. OLOROIA 
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F j g .  B-5--The Azimuth Pattern of the Rexolite Dielectric  
Loaded Crossed-Slot Antenna (0 = 20') 

Polar Chart No. 127D 
SCIENTIFIC.ATLANTA. INC. 

A T L A N T A ,  G E O R G I A  
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Fig. B-6--The Azimuth Pattern of the Rexolite Die lectr ic  
Loaded Crossed-Slot Antenna (0 = 2 5 O )  

Polar Chart No. 127D 
SCIENTIFIC.ATLANTA, INC 

ATLANTA, GEORGIA 



56 

F i g .  B-7--The Azimuth Pattern of  the Rexolite Die lec tr i c  
Loaded Crossed-Slot Antenna (e  = 30') 

Polar Chart NO. 127D 
SCIENTIFIC-ATLANTA, INC 

ATLANTA, GEORGIA 
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Fig. B-8--The Azimuth P a t t e r n  of t h e  Rexo l i t e  D i e l e c t r i c  
Loaded Crossed-Slo t  Antenna (8 = 35') 

Polar Chart  No. 127D 
SCIENTIFIC-ATLANTA, INC 

A T L A N T A .  GLORGIA 
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Fig .  B-9--The Azimuth P a t t e r n  of t h e  R e x o l i t e  D i e l e c t r i c  
Loaded Crossed-Slot  Antenna (0 = LOo) 

Polar Chart No. 127D 
SCIENTIFIC-ATLANTA. INC. 

ATLANTA. GEORGIA 



t 
t 

Fig. B-10--The Azimuth Pattern of the Rexol i te  D ie l ec tr i c  
h a d e d  Crossed-Slot Antenna (e = 45') 

Polar Chart No. 127D 
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F i g .  B-l l - -The Azimuth P a t t e r n  of the  Rexo l i t e  D i e l e c t r i c  
Loaded Crossed-Slo t  Antenna (0 = 502)  

Polar Chart N o  127D 
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&TLANTA. GEORGIA 



Fig.  B-lZ--The Azimuth Pattern o f  the Rexolite D ie l ec tr i c  
Loaded Crossed-Slot Antenna (0 = 55') 

Polar Chart No. 127D 
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ATLANTA. GEORGIA 
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Fig .  B-l3--The Azimuth P a t t e r n  o f  
Loaded Crossed-Slo t  Antenna (e = 6Q0) 

t h e  Rexo l i t e  D i e l e c t r i c  
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Fig.  B-l4--The Azimuth Pattern of the Rexolite D ie l ec tr i c  
Loaded Crossed-Slot Antenna ( e  = 65') 
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Fig. B-l5--The Azimuth Pattern of  the Rexolite D ie l ec tr i c  
Loaded Crossed-Slot Antenna (0 = 7a0) 
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Fig .  B-16--The Azimuth Pattern o f  the Rexolite Dielectric  
Loaded Crossed-Slot Antenna (0 = 7 5 9  

PGIX Chart No. 127D 
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F i g .  517--The Azimuth Pattern o f  the Rexol i te  D ie l ec tr i c  
Loaded Crossed-Slot Antenna (0 - 80°) 
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Fig. B-lE--The Azimuth P a t t e r n  of t h e  R e x o l i t e  D i e l e c t r i c  
Loaded Crossed-Slo t  Antenna (e = 8 5 0 )  

Polar Chart No. 1270 
SCIENTIFIC.ATLANTA, INC. 

ATLANTA. GEORGlA 
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Fig .  B-l9--The Azimuth Pattern of the Rexolite D ie l ec tr i c  
Loaded Crossed-Slot Antenna (e = 90°) 

Polar Chart No. 127D 
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ATLANTA. GEORGIA 
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Fig. B-20--Receiver Noise Level for Azimuth Pattern 
Measurements . -  
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Fig .  B-Zl--The Elevation Pattern of  the Rexolite D ie l ec tr i c  
Loaded Crossed-Slot Antenna Along &e X-Axis S lo t  
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F i g .  B-22--The Elevation Pattern of the Rexolite D ie l ec tr i c  
Loaded Crossed-Slot Antenna Along the U x i s  S lo t  

Polar Chart No. 127D 
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Fig.  B-23--The Elevation Pattern of the Kexolite Dielectric 
Loaded Crossed-Slot Antenna Along the Plane of Minimum Variation (@ = 45') 
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